187 research outputs found

    Properties of the 67P/Churyumov-Gerasimenko interior revealed by CONSERT radar

    Get PDF
    The Philae lander provides a unique opportunity to investigate the internal structure of a comet nucleus, providing information about its formation and evolution in the early solar system. We present Comet Nucleus Sounding Experiment by Radiowave Transmission (CONSERT) measurements of the interior of Comet 67P/Churyumov-Gerasimenko. From the propagation time and form of the signals, the upper part of the “head” of 67P is fairly homogeneous on a spatial scale of tens of meters. CONSERT also reduced the size of the uncertainty of Philae’s final landing site down to approximately 21 by 34 square meters. The average permittivity is about 1.27, suggesting that this region has a volumetric dust/ice ratio of 0.4 to 2.6 and a porosity of 75 to 85%. The dust component may be comparable to that of carbonaceous chondrites

    CONSERT suggests a change in local properties of 67P/Churyumov-Gerasimenko's nucleus at depth

    No full text
    International audienceAfter the successful landing of Philae on the nucleus of 67P/Churyumov-Gerasimenko, the Rosetta mission provided the first opportunity of performing measurements with the CONSERT tomographic radar in November 2014. CONSERT data were acquired during this first science sequence. They unambiguously showed that propagation through the smaller lobe of the nucleus was achieved. Aims. While the ultimate objective of the CONSERT radar is to perform the tomography of the nucleus, this paper focuses on the local characterization of the shallow subsurface in the area of Philae’s final landing site, specifically determining the possible presence of a permittivity gradient below the nucleus surface.Methods. A number of electromagnetic simulations were made with a ray-tracing code to parametrically study how the gradient of the dielectric constant in the near-subsurface affects the ability of CONSERT to receive signals.Results. At the 90 MHz frequency of CONSERT, the dielectric constant is a function of porosity, composition, and temperature. The dielectric constant values considered for the study are based on observations made by the other instruments of the Rosetta mission, which indicate a possible near-surface gradient in physical properties and on laboratory measurements made on analog samples. Conclusions. The obtained simulated data clearly show that if the dielectric constant were increasing with depth, it would have prevented the reception of signal at the CONSERT location during the first science sequence. We conclude from our simulations that the dielectric constant most probably decreases with depth

    Elevated Electron Temperatures in the Auroral E Layer Measured With the Chatanika Radar

    Get PDF
    An extensive series of spectral measurements has been made in the auroral E region with the Chatanika incoherent scatter radar. Becasue of the small scale length for variations of electron density, temperatures, and ion-neutral collisions we used the operating mode with the best possible range resolution—9 km. About 5% of the time the data exhibited an unusual spectral shape that was most pronounced at 105 and 110 km. Instead of being almost Gaussian with only a small hint of two peaks, the spectra are much wider, with two well-developed peaks. After carefully considering the validity of the measurements and their interpretation, we conclude that the unusual spectra are due to greatly enhanced electron temperatures. At 110 km, the electron temperature may increase from 250 K to 800 K, while the ion temperature remains near 250 K. This enhancement of the electron temperature extends from 99 km to at least 116 km. We show that the temperature increase is too large to be accounted for by auroral particle precipitation, though it coincides in time with ion temperature enhancements at altitudes above 125 km. Because these latter enhancements are believed to be due to joule heating, we deduce that electric fields of 24-40 mV/m are present and that the electrons are moving through the ions and neutrals at speeds of 500-800 m/s. Despite these velocities, we find that joule heating of the electrons also cannot account for the elevated electron temperatures. Several consequences of the elevated electron temperatures are discussed. One is that the rate constants for molecular recombination are reduced. Another is that during periods of significant joule heating, the deduced electron density profile, when fully corrected for temperatures, has a significantly lower peak altitude and greater density than that deduced under the usual assumption of equal electron and ion temperatures. Since conductivities, currents, ionization rates, and differential energy spectra are dependent upon the density profile, care must be taken to account properly for the temperature effects when deriving these quantities

    The Global Search for Liquid Water on Mars from Orbit: Current and Future Perspectives

    Get PDF
    Due to its significance in astrobiology, assessing the amount and state of liquid water present on Mars today has become one of the drivers of its exploration. Subglacial water was identified by the Mars Advanced Radar for Subsurface and Ionosphere Sounding (MARSIS) aboard the European Space Agency spacecraft Mars Express through the analysis of echoes, coming from a depth of about 1.5 km, which were stronger than surface echoes. The cause of this anomalous characteristic is the high relative permittivity of water-bearing materials, resulting in a high reflection coefficient. A determining factor in the occurrence of such strong echoes is the low attenuation of the MARSIS radar pulse in cold water ice, the main constituent of the Martian polar caps. The present analysis clarifies that the conditions causing exceptionally strong subsurface echoes occur solely in the Martian polar caps, and that the detection of subsurface water under a predominantly rocky surface layer using radar sounding will require thorough electromagnetic modeling, complicated by the lack of knowledge of many subsurface physical parameters. Higher-frequency radar sounders such as SHARAD cannot penetrate deep enough to detect basal echoes over the thickest part of the polar caps. Alternative methods such as rover-borne Ground Penetrating Radar and time-domain electromagnetic sounding are not capable of providing global coverage. MARSIS observations over the Martian polar caps have been limited by the need to downlink data before on-board processing, but their number will increase in coming years. The Chinese mission to Mars that is to be launched in 2020, Tianwen-1, will carry a subsurface sounding radar operating at frequencies that are close to those of MARSIS, and the expected signal-to-noise ratio of subsurface detection will likely be sufficient for identifying anomalously bright subsurface reflectors. The search for subsurface water through radar sounding is thus far from being concluded

    Ionosphere of Mars during the consecutive solar minima 23/24 and 24/25 as seen by MARSIS-Mars Express

    Get PDF
    The Mars' ionospheric behavior during two consecutive solar minima (23/24 and 24/25) is investigated with the same dataset. In particular, we use the Mars Advanced Radar for Subsurface and Ionospheric Sounding (MARSIS) on board Mars Express to investigate the total electron content behavior of the whole atmosphere in relation to the solar irradiance (EUV and X-ray fluxes), the solar zenith angle and the heliocentric distance. The topside variability of the electron density profiles is also investigated through variations in the peak density and neutral scale height. Moreover, the equations of the NeMars empirical model of the Martian ionosphere for low solar activity are tested for both minima. We have found that the topside ionosphere of Mars behaved similarly at both solar minima. However, when considering the bottomside, a pronounced reduction in ionization in particular cases is suggested. In addition, larger TEC values are found during the solar minimum 24/25 in the nightside sector that may indicate possible larger plasma transport than during the minimum 23/24. Finally, this study confirms that the ionospheric empirical NeMars model equations derived by Sanchez-Cano et al. (2016) for the low solar activity period during the solar minimum 23/24 are also valid and accurate for the solar minimum 24/25. The long duration of Mars Express is a critical factor for determining the long-term Martian ionospheric variability, which in turn, is essential for understanding the global evolution of the planet's atmosphere

    The WISDOM Radar: Unveiling the Subsurface Beneath the ExoMars Rover and Identifying the Best Locations for Drilling

    Get PDF
    The search for evidence of past or present life on Mars is the principal objective of the 2020 ESA-Roscosmos ExoMars Rover mission. If such evidence is to be found anywhere, it will most likely be in the subsurface, where organic molecules are shielded from the destructive effects of ionizing radiation and atmospheric oxidants. For this reason, the ExoMars Rover mission has been optimized to investigate the subsurface to identify, understand, and sample those locations where conditions for the preservation of evidence of past life are most likely to be found. The Water Ice Subsurface Deposit Observation on Mars (WISDOM) ground-penetrating radar has been designed to provide information about the nature of the shallow subsurface over depth ranging from 3 to 10 m (with a vertical resolution of up to 3 cm), depending on the dielectric properties of the regolith. This depth range is critical to understanding the geologic evolution stratigraphy and distribution and state of subsurface H2O, which provide important clues in the search for life and the identification of optimal drilling sites for investigation and sampling by the Rover's 2-m drill. WISDOM will help ensure the safety and success of drilling operations by identification of potential hazards that might interfere with retrieval of subsurface samples

    Flights Are Ten a Sail – Re-use and Commonality in the Design and System Engineering of Small Spacecraft Solar Sail Missions with Modular Hardware for Responsive and Adaptive Exploration

    Get PDF
    The exploration of small solar system bodies started with fast fly-bys of opportunity on the sidelines of missions to the planets. The tiny new worlds seen turned out to be so intriguing and different from all else(and each other) that dedicated sample-return and in-situ analysis missions were developed and launched. Through these, highly efficient low-thrust propulsion expanded from commercial use into mainstream and flagship science missions, there in combination with gravity assists. In parallel, the growth of small spacecraft solutions accelerated in numbers as well as individual spacecraft capabilities. The on-going missions OSIRIS-REx (NASA) or Hayabusa2 (JAXA) with its landers MINERVA-II and MASCOT, and the upcoming NEA scout mission are examples of this synergy of trends. The continuation of these and other related developments towards a propellant-less and highly efficient class of spacecraft for solar system exploration emerges in the form of small spacecraft solar sails designed for carefree handling and equipped with carried landers and application modules. These address the needs of all asteroid user communities– planetary science, planetary defence, and in-situ resource utilization – as well as other fields of solar system science and applications such as space weather warning and solar observations. Already the DLR-ESTEC GOSSAMER Roadmap for Solar Sailing initiated studies of missions uniquely feasible with solar sails such as Displaced L1 (DL1) space weather advance warning and monitoring and Solar Polar Orbiter(SPO) delivery, which demonstrate the capabilities of near-term solar sails to reach any kind of orbit in the inner solar system. This enables Multiple Near-Earth Asteroid (NEA) rendezvous missions (MNR),from Earth-coorbital to extremely inclined and even retrograde target orbits. For these mission types using separable payloads, design concepts can be derived from the separable Boom Sail Deployment Units characteristic of DLR GOSSAMER solar sail technology, nanolanders like MASCOT, or microlanders like the JAXA-DLR Jupiter Trojan Asteroid Lander for the OKEANOS mission which can shuttle from the sail to the targets visited and enable multiple NEA sample-return missions. These nanospacecraft scale components are an ideal match creating solar sails in micro-spacecraft format whose launch configurations are compatible with secondary payload platforms such as ESPA and ASAP. The DLR GOSSAMER solar sail technology builds on the experience gained in the development of deployable membrane structures leading up to the successful ground deployment test of a (20 m) solar sail at DLR Cologne in 1999 and in the 20 years since

    Editorial

    No full text
    International audienc

    Editorial

    No full text
    International audienc
    • 

    corecore